Regulation and Innovation

Jim Vercammen
CAIRN Workshop (Banff)
December 6-7, 2009

Objectives of this Talk

• Facilitate a discussion about the impact of regulation on innovation
• Discuss several relevant papers
• Direct questions to panel members to obtain their thoughts on this topic
• Identify research priorities for CAIRN
Types of Regulation

• Regulatory approval for new products and technologies initiated by industry
 – e.g., novel plant material from biotechnology
• New regulations on industry resulting from concerns over consumer safety, the environment, animal welfare, etc.
 – e.g., new rules governing transport of livestock
• Changes to existing legislation to address evolving needs of society

Applications by Industry for Approval

• Plant variety
• Pesticide and other plant health
• Applications of biotechnology
• Food products, packaging, labels, processing procedures
• Nutraceuticals, functional foods, bioproducts
• Other technologies (e.g., bio-energy)

Panel: Are there other categories and do you have specific info about the procedure for approval?
Canadian Food Inspection Agency

- Canada Agricultural Products Act
- Consumer Packaging and Labeling Act
- Food and Drugs Act (as it relates to food)
- Health of Animals Act
- Meat Inspection Act
- Plant Breeders' Rights Act
- Plant Protection Act
- Others

Regulating Agricultural Biotechnology

- CFIA assesses the safety of plants, animal feeds, fertilizers, etc.
- Health Canada assesses the human health safety of products derived through biotechnology (e.g., foods, drugs, cosmetics, pesticides)
- CFIA manages non-health and safety food labeling regulations and policies
- CFIA regulates:
 - Animal Biotechnology
 - Labeling of novel foods derived from genetic engineering
 - Plants with novel traits
Health Canada

- Natural health products fall under the *Natural Health Products Regulations* of the *Food and Drugs Act*
- Includes vitamins and minerals; herbal remedies; homeopathic medicines; traditional medicines; probiotics
- About 40,000 products currently available
- Regulations include a product licensing system, clinical trial procedures and labeling requirements

Falling Between the Crackers!

- Natural health products and foods are regulated under the *Food and Drugs Act* (FDA)
- Natural health products (as defined in the *Natural Health Products Regulations*) are subject to the FDA as it applies to a drug
- Foods (as defined in the FDA) are subject to the FDA as it applies to food; pre-established health claims are allowed
- A product, that is both a NHP and a food is subject to the NHPR but is exempted from the food-based FDA
To be or not to be (a food)

- Distinction between NHP and food product is important (evaluation protocol, product claims, etc.)
- Since implementation of NHPR in 2004, Health Canada has received hundreds of new applications for products that appear to be a food e.g., energy drink
- Many products that meet the definition of “natural health product” are currently being offered for sale without a product license
- Delays in approvals can stretch out for many years

Panel Question

- *Do panel members have anything to add concerning the confusion over the regulation of NHPs versus foods and the delay in the approval process?*
Standards
Industry Canada (Office of Consumer Affairs)

• Standards are technical specifications/criteria for a product, process or service
• Standards development organizations may submit to Standards Council of Canada
• Currently more than 7000 national standards
• Companies adopt voluntary standards or comply with mandatory standards (majority are voluntary)
• Governments may draft new standards or incorporate existing standards into legislation

Standards; Cont’d

• Performance specifications: products meet prescribed test requirements (e.g., strength)
• Prescriptive specifications: identify product characteristics such as type of material
• Design specifications: set out the specific design or technical characteristics of a product
• Management specifications: specify process and procedural requirements
Voluntary Codes

- Include codes of conduct, codes of practice, voluntary initiatives, guidelines and non-regulatory agreements
- Codes supplement and sometimes replace regulation
- Typically inexpensive, flexible and effective
- Used for environmental protection, health and safety, advertising, quality, etc.
- Failure to comply can result in civil liability

Regulatory Delay in New Approvals

- Why, in general, are approval delays so long?
- Answer appears to be a commitment to “due process” and lack of consensus amongst scientists
- Is due process a mechanism for others to achieve delay for strategic reasons?
- Could a scientific court be used to fast-track approval process and regulations be structured after technology has matured?
Does Uncertainty in Regulatory Approval Time Hurt Innovation?

- Longer delays unambiguously reduce the incentives to innovate
- However, because long delays are discounted more heavily than short delays, the expected value of innovation is higher with more uncertainty over the timing of regulatory approval
- This builds on a Jensen’s convexity argument, which is common in economics
- This work ignores the cost of coordination when the regulatory approval times are uncertain

Innovating around Regulations

- Panel Discussion
 - Examples of regulations you face when managing graduate students and research grants?
 - Examples of personal innovations that have made you more effective at these activities?
 - Are your innovations constrained by regulations? Are they an attempt to lower cost of complying?
 - If all regulations were dissolved, would your department develop equally (or more) efficient codes of conduct?
Innovation and Beneficial Regulation: “Squeezing the Lemons”

- Conventional wisdom is that lengthy and costly approval processes reduce innovation
- Approval time (avg. of 8 years for drugs) also eats into life of the patent
- Recent reforms have extended patent lives to deal with approval delay
- Purpose of the paper is to show that regulation may increase rather than decrease the incentive to innovate

Why Regulation?

- Worry is that firms will overstate benefits and understate hidden costs of a product to obtain a first mover advantage
- This is especially problematic for drugs
- Regulation protects ill-informed consumers
- Peltzman (1973) concluded that consumer savings on ineffective drugs was far outweighed by the cost of reduced innovation
Patents and Regulation

- The relationship between patents (promote innovation) and drug regulation (stifle innovation) is more complicated
- Perhaps regulatory review is similar to investment in education – the shorter time horizon is more than offset by higher returns
- Regulation solves the lemons problem and therefore raises expected profits for quality drugs
- Firms would need to invest in certification anyway – gov’t may be more effective because of trust

Summary

- Regulation impacts low quality products more than high quality, so regulation may be efficient at achieving separation
- The real cost regulation is the difference between the actual cost of regulation and the industry’s cost of dealing with lemons problem (e.g., private standards)

Panel: Which industries in the agri-food sector are most likely to benefit from the lemon-reducing effects of regulation?
Private Standards

Enabling Lighter Touch Regulation (BSI Group)

- Traditional model of regulation is blanket treatment for all regulated activities
- Now recognized that regulation should be aimed at highest risk cases and responsible industry should be allowed to operate with private standards
- Examples: “Kitemark Certification” for automotive repair in Britain
- Standards can be developed with consensus of all stakeholders

Standards as an Indicator of Risk

- Those who fail to comply with rigorous industry standards have the highest risk of not complying with regulation
- Inspection should target firms who do not comply with standards
- If this process is known, firms will have a strong incentive to comply with standards
- Well-designed standards can provide flexibility, transparency and a strong incentive to innovate
Panel Discussion

• For years the food processing industry made extensive use of hydrogenated oils despite growing evidence about the health effects of trans fats. Legislation was eventually required.
• A similar scenario with sodium appears to be emerging
• Can industry be trusted to develop their own standards that will replace regulation?

Regulation and Technological Change in the American Meat Industry

John Sink
Technovation 2 (1984)
Study Objective

- What impact has new regulations in meat packing had on the rate of innovation and the types of innovation?

Neoclassical Theory of Regulation and Innovation

- Regulation may increase revenue stream, reduce the cost of innovation and quicken commercialization
- Regulation ➔ higher cost of producing new product, administration, regulatory delay
- Regulatory delay ➔ more discounting, missed opportunities
- Regulation may induce firms to seek lower costs of compliance ➔ possibly lower operating costs
- Regulation can reduce buyer uncertainty and speed up early adoption
X-Efficiency Theory of Regulation and Innovation

- A regulatory shock induces firms to focus attention on “taken as given” practices
- Firms uncover cost savings which were previously available but unobservable
- The added costs associated with compliance may be partially or fully offset by new cost savings

Exogenous Technological Change

- Technological innovation may be exogenous (“right place at the right time”) rather than driven solely by economic considerations
- Exogenous innovation will be less impacted by regulation than endogenous innovation
Meat Packing in the U.S.

• Subject to about 41,000 regulations
• Most new equipment (design and materials) adopted from non-food industries
• Regulations on humane killing met with resistance, but lots of new inventions followed
• Regulations on precision concerning fat content of ground beef induced innovation
• Applications for equipment modification approvals rose sharply between 1975 and 1978

Industry Interviews

• Main concern was the uncertainty about standards being used to judge compliance
• More complicated approval processes → incremental improvements versus adoption of new designs
• New technologies often have more stringent standards, so firms may be better off with old
• Regulatory uncertainty probably speeding rate of mergers in industry → less aggregate R&D
Causal Relationships

• Does innovation follow regulation, or does regulation follow best practices?
• Relevant where private standards are common
• Firms may innovate in anticipation of new regulations
• These factors complicate econometric work
• Countries with less stringent regulation do not appear to be innovating more than the U.S.

Product Design

• Designs by external consultants were typically not suitable because nuances of regulation were not considered
• In house design superior because parameters of approval process better understood
• Knowledge pertaining to understanding regulations has high industry valuable
• Firms have so internalized regulations that it is hard for managers to estimate the cost of compliance
Panel Discussion

If you believe the X efficiency argument or the argument that innovation is largely exogenous, then the negative impact of innovation on regulation maybe overstated. What do you think?

In agri-food, does innovation follow regulation or does regulation follow best practices?

CAIRN Research Priorities

• Cost-benefit analysis for regulatory approval of ambiguous products and technologies
• Examine the extent that firms innovate to lower the cost of regulatory compliance
• Develop econometric procedures for examining the impact of regulation on innovation
• Develop formal models of private standards as a replacement for regulation
• Test X-efficiency and exogenous innovation hypothesis of innovation and link to regulation